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1 Introduction

Computer simulations have become an indispensable tool in many areas of science. They can be used to
study systems that cannot be solved analytically. They can be employed as “computer experiments” to test
theories or to generate new theoretical concepts. They also permit access to levels of detail that are often
not accessible to experiments. For example, one has complete control over the initial conditions and can track
movements of all particles at all times. A domain where computer simulations have historically enjoyed much
success is the study of the properties of materials. Indeed, simulations of crystals and liquids were among the
first applications of computer simulation techniques. Molecular dynamics simulations of biomolecular systems
– including applications to a wide range of protein properties, such as details of molecular conformations,
transmembrane transport, and protein-ligand binding – are rapidly growing in importance [5].

Here, we will provide an introduction to the basics techniques and theory behind computer simulations. More
complete descriptions of background theory and key algorithms can be found for instance in [6, 1, 9, 11, 14].
Statistical mechanics is crucial for understanding the theory and techniques behind molecular simulations, and
some background knowledge is assumed in this chapter. Many textbooks cover this topic, including [4, 15].

Rapid increases in computer processing power, the emergence of new hardware architectures and simulation
algorithms that allow massive parallelization, as well as the development of novel simulation algorithms, together
with software packages that facilitate their use have greatly increased the complexity of systems that can be
simulated. However, the more difficult the studied system, the more dangerous it becomes to treat simulation
software just as a black box. Without deeper understanding of the algorithms and methods employed, it is easy
to fool oneself.

Our aim is to provide a bit a better appreciation of what is going under the hood when such a simulation
package is employed. What are the approximations used? How do these impose limits on validity and appli-
cability? How do I know whether I can extract real physical insight, or have created nothing but a pretty,
but potentially misleading, picture or movie? Such questions must never be left aside if one wants to properly
distinguish bon fide predictions of real system behavior from simulation artifacts.

The most common techniques employed to study thermodynamic properties of systems of particles are
Molecular dynamics and Monte Carlo algorithms, which we briefly review. We then discuss some common
techniques for speeding-up simulations and overcoming free-energy barriers, and finally provide a list of some
of the popular simulation packages for biomolecular systems.

2 Molecular dynamics

Molecular dynamics (MD) simulations fundamentally just solve Newton’s laws of motion for a set of classical
interacting particles. This process generates time trajectories of particles in the simulated system that can
be visualized and used to measure non-equilibrium properties such as transport coefficients or equilibrium
thermodynamic ensemble averages. For example, to measure the mean value of a quantity A of interest (such
as pressure, distance or binding energy between two molecules), one first records its value Ak at different times
tk, from which an average can be extracted:

A =
1

M

M∑
k=1

Ak (1)

where M is the total number of measurements. A is then the simulation estimate of 〈A〉, the mean value of
quantity A in the thermodynamic equilibrium.
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To generate time trajectories for use in averages such as Eq. (1), we first introduce a common integration
scheme for Newton’s equations in section 2.1. Newton’s equations conserve energy, so that temperature fluc-
tuates, while many experimental systems are at constant temperature. We therefore show how to couple the
system to a heat-bath for constant temperature T in section 2.2.

2.1 Integrating the equations of motion

The particles in an MD system may represent for example a molecule of gas, connected individual atoms
in a protein or some larger-scale coarse-grained entity. The interactions between particles are specified by the
interaction potential function V (r1, r2, . . . , rN ), which is uniquely determined by their positions. We will use the
symbol rN to refer to a set of positions of all N particles. Often, we deal with systems that only contain pairwise
interaction between particles and the interaction potential can be simplified as a sum between interacting pairs:

V
(
rN
)

=

N∑
i<j

vij (rij) , (2)

where vij is the pairwise potential function and rij is the distance between particles i and j.
The dynamics of the system is determined by Newton’s equations of motion:

mv̇i = fi = −∂V
∂ri

(3)

where vi, ri and fi are velocity, position and force acting on the i-th particle respectively. To obtain the
trajectory of the particles we need to integrate Eq. (3). A simple integration scheme that is widely used for
molecular dynamics simulation is called the Verlet algorithm. The simulation time is discretized into time steps
of equal length ∆t. Taylor expansion of the positions at times t+ ∆t and t−∆t gives

ri(t+ ∆t) = ri(t) + vi(t)∆t+
fi(t)

2m
∆t2 +

∆t3

6

...
r +O(∆t4) (4)

ri(t−∆t) = ri(t)− vi(t)∆t+
fi(t)

2m
∆t2 − ∆t3

6

...
r +O(∆t4). (5)

Adding (4) and (5), we obtain

r(t+ ∆t) = 2ri(t)− ri(t−∆t) +
fi(t)

m
∆t2 +O(∆t4) (6)

for the position update. Note that the expression for positions of particles are precise up to the O(∆t4),
because the terms proportional to ∆t3 canceled out. We further obtain velocity by subtracting (4) from (5)
and rearranging the terms:

vi(t) =
1

2∆t
(ri(t+ ∆t)− ri(t−∆t)) +O(∆t3). (7)

The integration scheme in Eqs. (6), (7) can be also equivalently expressed [6] as so-called velocity Verlet scheme

ri(t+ ∆t) = ri(t) + vi(t)∆t+
fi(t)

2m
∆t2 (8)

vi(t+ ∆t) = vi(t) +
fi(t) + fi(t+ ∆t)

2m
∆t, (9)

which provides the values for position and velocity for each time step, whereas in previous formulation in Eq. (7)
it was necessary to evaluate positions both at times t and t+ ∆t to obtain the velocity at t. Other integrators
can be found in the literature, but the principles are similar [6].

The appropriate choice of step size ∆t will depend on the particular form of interaction potential between
particles. Choosing ∆t too large will lead to large differences in the forces at adjacent time-steps, and generate
artifacts because the integrator does not converge. Typically, the steeper the potential or the higher the
temperature (and mean square velocities) the smaller the maximal time-step. On the other hand, picking too
small a time-step will unnecessarily slow down the simulation, which could mean that the time trajectories are
too short to generate meaningful time averages.

Despite its relative simplicity, the Verlet scheme remains a popular choice for MD simulations. Higher-
order integration schemes are useful for reproducing a single trajectory as accurately as possible for given
initial condition, like when navigating a space probe through asteroid belt. But for sampling thermodynamic
properties of a large molecular system, the Verlet integration has several important properties that make it
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a good algorithm. It only requires evaluation of the first derivative of the potential function V , which makes
it very efficient, as the force calculation is typically the most time-consuming part of simulation. Algorithms
that use second and higher derivatives of the potential allow for greater precision, offering the possibility to use
larger time-step size. However, the increase in a step size is relatively minor and does not compensate for the
computational cost of evaluating higher order derivatives of potential.

Molecular simulations are chaotic systems, where the trajectories quickly diverge if they start from slightly
different initial conditions. But even though the trajectories generated by the Verlet algorithm diverge from
the exact solution of the equations of motion, it conserves energy over much longer time-scales. As opposed to
several higher-order, more precise integration schemes, Verlet integration can be shown to rigorously preserve
the volume of the phase space, a necessary (but not sufficient) condition to avoid long-term energy drift during
the course of the simulation [6].

2.2 Controlling the temperature

The numerical integrator described in section 2.1 allows for simulation at fixed number of particles (N), volume
(V) and energy (E), i.e. the NVE ensemble. However, we are usually interested in studying the properties of a
system at a constant temperature T , where energy fluctuates. Such a system is called an NVT ensemble (also
called the canonical ensemble in statistical mechanics). Algorithms designed to couple MD simulations to heat
bath at temperature T are called thermostats. Some of the popular ones include:

• The Andersen thermostat is relatively simple. It couples the simulated system with a heat bath via
random “collisions.” In each MD simulation step, a particle undergoes a “collision” with a probability ν, in
which case its velocity vector components are set to randomly sampled values from a Maxwell-Boltzmann
distribution at temperature T . Their dynamics is strongly perturbed on time-scales shorter than the
mean time between collisions 1/ν, but on longer time-scales this scheme provides a good approximation of
diffusive dynamics at a fixed temperature T , and so approximates the canonical ensemble in some cases.
It also has the virtue of being straightforward to implement.

• Berendsen thermostat uses the kinetic energy at a given simulation time t to define an instantaneous
temperature T ′(t) as

N∑
i=1

miv
2
i = NfkBT

′(t) (10)

where Nf represents the number of degrees of freedom ( Nf = 3N − 3 for N free particles with fixed total
momentum). If the instantaneous temperature is not equal to the temperature T at which we want to
simulate our ensemble, the Berendsen thermostat rescales at each time step the velocity of each particle
i as vi → λvi. One could choose λ so that T ′(t) = T in each step, but such a simulation would not
be representative of a canonical ensemble, where kinetic energy is not constant and fluctuates around its
mean value. Therefore, the Berendsen thermostat sets λ so that the change in instantaneous temperature
satisfies

∆T ′(t) =
∆t

τ
(T − T ′(t)) (11)

where τ determines the coupling to the heat bath. Hence we need to rescale the velocities in each step
with a factor

λ =

√
1 +

∆t (T − T ′(t))
τT ′(t)

, (12)

where T ′(t) is updated according to Eq. (11). Although Berendsen thermostat does not exactly reproduce
the canonical ensemble, it is suitable for initialization and preparation of a system in a desired temperature
T .

• The Nosé-Hoover thermostat introduces an extra coordinate into the system that has the function of
coupling the system to a thermostat. The equations of motion change to

mv̇i = fi − ξmvi (13)

Qξ̇ = 2

N∑
i

mv2
i − kBTNf , (14)

where Nf is the number of degrees of freedom, ξ is the newly introduced friction thermodynamic coefficient
and Q is a parameter that sets the strength of the coupling to the thermostat. It can be shown that the
microcanonical partition function of the extended ensemble with variable ξ is proportional to the canonical
partition function of a system of N particles at temperature T [6]. Integrating Eqs. (13), (14) can hence be
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used to obtain correct thermodynamic averages of chosen observables. Note that the dynamics generated
by Nosé-Hoover scheme is deterministic, as the formulation does not include any stochastic random terms.
For certain systems, this thermostat may fail to be ergodic and correctly sample the canonical function.
This can be resolved by introducing further auxiliary coordinates and constructing so-called Nosé-Hoover
Chains [6].

• Langevin dynamics evolves the system according to the equation

mv̇i = fi − γvi + FiR(t). (15)

Two new terms, the friction term γvi and a random force FiR(t) respectively, are introduced on the right
hand side with respect to Eq. (3). These terms mimic the effect of the collisions with the molecules of a
solvent that are not simulated explicitly. Thus this method can be viewed not just as a thermostat, but
also as the approximate equations of motion for an object in a background solution. The random force is
represented as white noise:

〈F(t)iRα〉 = 0 (16)

〈FiRα(t)FjRβ(t′)〉 = 2γkBTδijδαβδ(t− t′), (17)

where α and β are components of the vector F(t)iR. The damping coefficient γ depends on the shape
and size of the simulated particle, which is usually assumed to be spherical. Integration schemes, similar
to Verlet algorithm, can be derived for Eq. (15), which also include the damping (velocity-dependent)
force γvi and the random force FiR(t) generated at every step. The random force means that Langevin
dynamics is fundamentally stochastic (as is for example the Andersen thermostat).

The list of thermostats above is certainly not exhaustive, but covers some of the popular choices offered
in simulation software. The stochastic Andersen and Langevin thermostats are often used for coarse-grained
simulations where the solvent is not simulated explicitly, but its effects are reproduced by the thermostat. The
dynamics is however perturbed due to the stochastic nature of the thermostats. Because relative momentum is
not conserved, these thermostats all destroy hydrodynamic correlations (e.g. on time-scales longer than 1/ν in
the Andersen thermostat). Other techniques must be used to ensure correct hydrodynamic interactions [13].

Finally, we note that it is often of interest to simulate a system with constant number of particles (N),
temperature (T) and pressure (P), the so called NPT ensemble. In such a simulation, the volume is dynamically
adjusted during the course of the simulation to ensure the desired pressure. Algorithms that perform such scaling
are called barostats. Some of the examples include Nosé-Hoover and Berendsen barostat, which are based on
similar principles to the corresponding thermostats, except that they are dynamically rescaling the unit cell
volume in the simulation to ensure a desired pressure.

3 Monte Carlo Sampling

Another popular method for sampling the equilibrium properties of a molecular system is the Monte Carlo (MC)
algorithm. While the molecular dynamics simulations solve equations of motion, MC simulations of molecular
systems propose random moves (translation or rotation) of a particle, which are either rejected or accepted with
a given probability p, set in a way that ensures correct sampling from a desired ensemble (typically NPT or
NVT).

3.1 Metropolis Monte Carlo

Arguably the most widely used MC algorithms for materials is the Metropolis Monte Carlo algorithm:

1. Select a particle at random and apply to it either a random translation vector or a random rotation.

2. Evaluate the interaction energy U(rNnew) after the particle has been displaced, described as a change in
position/orientation to rNnew from rNold, the original configuration of all the particles.

3. Accept the transition from the old to the new configuration with probability

p(o→ n) = min

[
1, exp

(
U(rNold)− U(rNnew)

kBT

)]
. (18)

Note that moves are always accepted if they lower the energy U , while steps that increase the energy are
accepted with a Boltzmann weight of the difference in energy. These ”uphill” steps allow the system to
exit local minima and efficiently sample the phase space. If a proposed move is rejected and the system
remains in the same configuration, it will still be counted for ensemble averages.

4



A sufficient condition that guarantees that the MC algorithm samples from a canonical ensemble is that it
satisfies the detailed balance condition:

P (o)π(o→ n) = P (n)π(n→ o) (19)

where P (o) and P (n) are the probabilities of the configuration o = rNold and n = rNnew respectively appearing in
the ensemble in the first place, while π(o→ n) denotes the probability that if the system is in configuration o,
it moves to n in the MC simulation (and analogously for π(n→ o)). It can be split into two terms

π(o→ n) = α(o→ n)p(o→ n),

where α(o → n) is the probability of suggesting a trial move from o to n, and p(o → n) is the probability of
accepting such a proposed move. In the Metropolis scheme outlined above, we have

α(o→ n) = α(n→ o), (20)

the probability of proposing a move is symmetric in the direction. However, for the canonical ensemble we
require that the respective probabilities of configurations are given by

P (o) = exp

(
−U(rNold)

kBT

)
P (n) = exp

(
−U(rNnew)

kBT

)
(21)

Inserting (21) and (20) into the detailed balance condition (19), we obtain criterion

p(o→ n)

p(n→ o)
= exp

(
U(rNold)− U(rNnew)

kBT

)
, (22)

which is satisfied by the Metropolis acceptance criterion in Eq. (18).
Since we only move one particle in each step, it is convenient to denote N moves in an N -particle system

as one “sweep.” By reporting the number of sweeps rather than number of individual steps, data can be more
easily compared between different system sizes.

The maximum size of the generated random translation or rotation are parameters whose optimal value
depends on particular system of interest. Setting the maximum move size too large will likely result in the
majority of moves being rejected, as a random trial move is likely to break too many particle interactions.
Too small a maximum move size will slow down the time necessary to equilibrate system and will not sample
efficiently. As a rule of thumb, one typically aims for about ≈ 20− 50% acceptance rate [6].

3.2 Using Monte Carlo for Molecular Simulation

MC algorithms can be used to study equilibrium properties of the system which do not depend on the velocity.
Similarly as in the case of MD (Eq. (1)), we can estimate the average of a quantity of interest by recording their
values for the configurations sampled by the MC algorithm.

For large biomolecular systems (such as a fully atomistic simulation of a molecule with solvent), the MD
simulations described in section 2 remain the preferred choice. This is in part because they are more suitable for
acceleration by parallelization on multiple processors and in part because MD is better for studying dynamical
properties. MC is furthermore not very efficient for tightly bound molecules (such as strongly interacting
particles in an off-lattice polymer), where large moves cannot be proposed, because they would likely break
the strong interaction and be rejected. MC can be however used for the relaxation of the initial configuration,
which can then subsequently be simulated with MD.

However, more advanced MC schemes are available for bio-molecules [9]. In particular, cluster MC methods
can greatly increase efficiency and have been successfully used both in fully atomistic and coarse-grained models.
For efficient sampling of smaller systems they can even outperform MD. A recently developed cluster algorithm
Virtual Move Monte Carlo [21] has been also used to study dynamics of non-equilibrium systems. Finally, MC
methods are often preferred for more coarse-grained systems, such as polymers on a lattice [9].

4 Practical aspects of numerical simulations

4.1 Ergodicity and error estimation

When sampling a studied system with MD or MC simulations, we assume an ergodic hypothesis, which states
that the average A of a measured quantity A obtained from sampling in Eq. (1) is equal to an ensemble average
over configurations 〈A〉 as defined in statistical physics, i.e. for canonical ensemble at temperature T :

〈A〉 =

∑
j Aj exp

(
−Ej

kBT

)
Z

=
1

M

M∑
k=1

Ak = A (23)
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where the ensemble average is taken over all possible states j of the system, while the average on the right
is taken at different times as in Eq. (1). Z is the partion function of the system, Z =

∑
j exp (−Ej/kBT ).

If simulations could run for infinite amounts of time then this equivalence would always hold, but in practice
time and resources are limited. One of the things that makes MD and MC possible is that often the number
of microstates or length of time traces don’t have to be that long, they just have to sample a “representative
number of states” [6]. Part of the art of simulation is knowing when such criteria are met. Typically molecular
simulations only run for very short times compared to experiment, often not more than a few ns. So if there
are two states separated by a barrier (as illustrated in Fig. 2) that in experiment interconvert on a time-scale of
seconds, this may never be observed in simulation without clever tricks. Depending on our initial configurations,
you may get different results because you are only locally sampling the potential well you start in. For example if
you start from different initial conditions, and get clearly different answers, then you probably have an ergodicity
problem.

4.1.1 Statistical errors

Statistical errors arise due to random perturbations (such as thermal fluctuations) in a measured quantity and
they can be estimated by taking large number of measurements. To evaluate the statistical error of the measured
A in Eq. (1), one can calculate the variance σ2

M from M measurements of A:

σ2
M (A) =

1

M

M∑
k=1

(
Ak −A

)2
. (24)

However, care should be taken because the respective values of Ak whose values are taken k′ steps apart can be
correlated so that you are effectively not taking statistically independent measures and will (possibly strongly)
underestimate your errors. The time-scale for statistically independent measurements can be measured with a
correlation function which typically decays exponentially:

C(k′) =
1

M − k′
M−k′∑
k=1

(
Ak+k′ −A

) (
Ak −A

)
∝ exp

(
−k
′

τ

)
, (25)

where τ is the decay time. If, for example, you take measurements separated by a time (or in MC number of
steps) k′ ≈ 2τ then it is reasonable to say that they are uncorrelated. The estimate of the variance of average
A is then

σ2
(
A
)
≈ 1

Mu − 1
σ2
M (26)

where Mu is the number of uncorrelated measurements taken. The standard deviation in our averages therefore
decays with Mu. If an observable has long correlation time τ , then very long MD time-trajectories or MC
particle trajectories need to be used to obtain statistically accurate measurements.

Another way of estimating the errors is by the block average method. Divide up the M measurements into
L consecutive blocks of length M/L each and calculate the average value of A within each block, denoted as Al
for l-th block. If the measurements are truly uncorrelated, then the block variance

σ2
L(Al) =

1

L

L∑
l=1

(
Al −A

)2
(27)

will be independent of L. So by plotting the block variance as a function of L, a value L∗ can be identified above
which this holds, and block averages will no longer be correlated. The variance of the average A estimated from
the block method is then

σ2
(
A
)
≈ σ2

L∗(Al)

L∗ − 1
. (28)

which can be assumed to be a measure of the true statistical errors in the simulations. It is amazing how rarely
these methods are employed in the literature – most published simulation error bars are strong underestimates!

4.1.2 Systematic errors

Systematic errors can arise from many sources. Your model could be wrong, your simulation method flawed (e.g.
too large time-steps), you could not be properly equilibrating your system before trying to measure properties,
your initial conditions could bias your outcomes (if there is, say a large barrier as in Figure 2), or your simulated
system could be too small so that finite size effects overwhelm the signal you are trying to extract. Opportunities
for error are boundless!
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There is no reliable procedure to detect systematic errors. For instance, when simulating a molecule that
transitions between multiple conformation states (such as opening and closing of a DNA hairpin close to its
melting temperature), you need to check that your simulation has visited all of those states. It is further
necessary to ensure that the simulation has made frequent transitions between these states. It can be helpful
to find several order parameters that characterize transitions in our system (for instance the number of bonds
between strands, distance between interacting molecules, or value of dihedral angle) and monitor their value
over the course of the simulation. Visualization (either by converting a trajectory to a movie or by taking
snapshots at separated time intervals) of simulated system can also provide valuable insight. Another useful
check is to run multiple independent simulations, each starting from a different initial state, and compare the
estimates of quantity of interest from each of them.

Finite-size effects are another possible source of systematic error: our simulated system of N particles might
be too small to correctly capture bulk behavior. Finite size errors typically scale as 1/

√
N and by examining

how measured properties change as a function of simulation size N , one can sometime reliably extrapolate to
the bulk limit.

4.2 Reduced units

In order to reduce the likelihood of errors, it is often convenient to formulate a simulation in reduced units.
For example, units for energy, mass and length are chosen and then all other quantities are expressed in terms
of these simulation units. When simulating a system with interaction potential with its minimum value −ε at
distance σ, a natural choice of unit length is σ, ε for unit energy and kBT/ε for unit temperature.

Using reduced units also helps highlight relationships between different quantities. It can also make code
more efficient, for example in a system of identical particles, we can use units where their mass is equal to
1 , thus saving the operation of multiplying or dividing by mass when calculating velocity and momentum.
Furthermore, all real values are represented with a finite precision in computer memory. Working with reduced
units in which the magnitude of the simulated quantities such as velocity or energy are of order ∼ 1 prevents
the possibility of the numbers to be too small or too large to be stored in memory. Finally, it is much easier to
monitor and log simulation runs when measured quantities are ∼ 1. If very large values suddenly appear, it is
a strong indication of a bug or another problem in the simulation.

4.3 Interaction potentials in molecular simulations

The interactions between particles in the molecular simulations depend on the particular system that we are
studying. However, the generic potentials in biomolecular simulations typically consist of two different classes
of interaction terms, bonded (Vb) and non-bonded (Vnb) interactions.

Vb represents for example interactions between covalently bonded atoms, or neighboring nucleotides/aminoacids
in a coarse grained polymer model. Vnb usually consists of the following terms

Vb = Vst + Vangle + Vdihedral. (29)

Vst is the stretching potential between adjacent bonded particles, which can take for example a quadratic form.
In that case, for particles at distance rij , Vst = k (rij − r0)

2
. Vangle depends on the mutual orientations of the

particles. For atomistic-level representation simulation, quadratic form of angular potential is often used, i.e.
Vangle (θijk) = k (θijk − θ0)

2
, where θijk is the the angle between the vectors rij and rjk connecting particles

i, j and j, k respectively. Finally, Vdihedral typically takes the form Vdihedral (φijkl) = k (1− cos (nφijkl − φ0)),
where φijkl is the dihedral angle defined as then angle between planes that contain particles i,j,k and (j,k,l)
respectively, and n is an integer defining the periodicity. Other forms of Vdihedral are also used, for example a
quadratic function of cos (φijkl).

Vnb contains non-bonded interactions. This term typically includes

Vnon−bonded = Velectrostatic + Vvdw, (30)

where Velectrostatic(r) = −keqiqk/r is the Coulomb law for particles at distance r with charges qi, qk, and Vvdw
is the van der Waals term, which can be modeled for instance with Lennard-Jones potential

Vvdw(r) = 4ε

((σ
r

)12
−
(σ
r

)6)
. (31)

The parameters of the potential functions can depend on the type of interacting particles. The type of
interactions and their concrete interactions form presented here is by no means exhaustive, and it will depend
on the particular model used.
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Figure 1: A schematic periodic square lattice. The gray square in the middle corresponds to the simulated
system. When calculating forces acting on particle 1, all particles and their images that are within its interaction
radius rc are considered.

4.4 Truncation of interactions

The most expensive part of the simulation is typically the evaluation of the potential. For simulations of N
particles, if all pairs of particles need to be considered, the time required for evaluation is O(N2). However, for
short-range potentials, interactions are very small for a distant particle. One can therefore reasonably choose a
cutoff distance rc beyond which potentials are set to zero. The great advantage of such a scheme is scaling as
O(N) instead of O(N2) (we will describe how to do this in more detail in section 4.6).

A naive truncation can lead to discontinuous forces, which is problematic for MD. So instead a truncated
and shifted potential v′ij is typically used to ensure that calculated forces are finite:

v′ij(r) =

{
vij(r)− vij(rc) for r ≤ rc
0 for r > rc

(32)

Note that the derivative of Eq. (32) can have a discontinuity at r = rc, and sometimes the potential is further
modified to have continuous derivatives as well.

For a system at density ρ with a pairwise potential vij that depends on the distance between a pair of
particles rij , the systematic error of not counting contributions from the potential above rc can be corrected by
adding a constant to the total interaction potential:

V ′(rN ) =
∑
rij<rc

vij(rij) +

∫ ∞
rc

Nρ

2
4πr2v(r)dr. (33)

We note that for interactions which depend on interparticle distance as ∝ rn where n ≤ 3 (such as for example
Coulombic interactions), the correction above will diverge. More sophisticated methods such as Ewald sums or
fast multipole method [6] need to be introduced to efficiently handle such long-range interactions.

4.5 Periodic boundary conditions

Even with rapid increases in computer power, the system sizes that can be handled by MC or MD simulations
typically remain orders of magnitudes below the number of molecules present in an experimental setting. This
can cause problems. For example, a cubic box of 1000 closely packed particles would have nearly half of the
particles on the surface, and these surface particles would behave differently from the bulk particles. One way
to get around such surface effects is to use periodic boundary conditions (PBC). The simulation is still run with
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the same number of particles, but the simulation box is repeated periodically, and particles near the edge can
interact with their closest neighbours in adjoining boxes, as shown in Figure 1.

During the course of the simulation the positions of each particle is determined modulo L, where L is the
chosen length of the side of the simulation box. Effectively, this means that if particle leaves the simulation box
through one side, it enters at the opposite side of the box.

The PBC lattice is usually chosen to be cubic (or square in 2D), but other options are also possible. Particles
inside the simulation box can interact with other particles in the box as well as their images in the neighboring
boxes, as illustrated in Figure 1. In practice choosing box size so that the cutoff rc < L/2 will assure that each
particle will only interact with the closest image of other simulated particles, and not with itself.

PBC can however cause some artifacts. For example the largest wavelength of fluctuations in the simulation
cannot be larger than L and, for example crystallization into geometries that are not commensurate with the
PBC will be artificially suppressed.

4.6 Verlet lists and cell lists

If the interaction cutoff is rc, it would be wasteful to calculate distances between all pairs of particles, as only a
fraction of them will be within interaction radius. The most widely used techniques of keeping track of particles
which are close enough to possibly interact are Verlet lists and cell lists.

A Verlet lists stores for each particle a list of particles which are at a distance smaller than rc + rs, where
rs is called the ”skin distance“. When calculating forces acting on a particle, only interactions with particles
stored in its Verlet list are considered. All lists need to be updated when any particle moves a distance larger
than rs from its original position when lists were last updated. The value of rs has to be carefully optimized:
too small rs will result in very frequent updates, while large values will result in too many particles kept in each
list.

Cell lists partition the simulation box into smaller boxes, called cells, with side length set to rc. Each cell
stores a list of particles inside it. For a given particle, we only consider interactions with particles inside its own
cell and its neighboring cells (8 in 2D and 26 in 3D). When a particle moves, we check whether it has moved
into a different cell, in which case we remove it from its old cell’s list and add it to the particle list in the new
cell.

Verlet lists and cell lists can be combined: When regenerating Verlet lists, we can only consider inclusion
of particles in neighboring cells. The evaluation time for calculating interactions between N particles with cell
lists scales as O(N), while Verlet lists method scales as O(N2). Combining both removes the N2 dependence of
the Verlet list scheme. The optimal choice, however, depends on the particular system and simulation method.
Verlet lists are well suited for MD simulations, where particle displacement per time step is small. In MC
simulations, which can allow large translation moves, it may be preferable to use cell lists alone.

4.7 Parallelization

While the speed of a single CPU core is no longer increasing according to Moore’s law, the law (a doubling of
processing power every 18 months) still holds because the number of cores that can be put on a single chip keeps
growing. In addition to multi-core CPUs, graphical processing units (GPUs), originally designed for accelerating
computer graphics operations, have successfully made their way into high performance computing community.
They consist of up to thousands of simple computing units, connected to high-speed memory, capable of run-
ning hundreds of threads concurrently. In order to take full advantage of latest hardware developments, it is
often necessary to design a parallelized version of simulation algorithms and employ programming interfaces
appropriate for chosen architecture.

A trivial way to take advantage of multiple CPU cores is to simply run multiple copies of the same simulation,
each with a different initial condition. We can change the seed of the random number generator for stochastic
algorithms or the initial configuration (such as initial velocities of particles in MD simulations). If the simulations
are run concurrently we can include points sampled by all simulations in our estimations in Eq. (1). This method
is suitable both for MC and MD, as long as the system is not too large to be properly equilibrated in an individual
single-core simulation.

Advanced parallelization methods require cooperation between CPU cores. A popular programming library,
MPI, offers a set of routines for communication between multiple processes that can be running on a single
multicore computer or multiple computers connected in a network. An MD simulation box is typically split
up into cubic domains, where interactions between all particles in one domain are handled by a single CPU
core. Communication between cores is necessary to properly synchronize iterations and handle particles crossing
between domains. While simulation time ideally would grow linearly with the number of cores uses, the increased
communication overhead for more cores means that the speedup will eventually saturate.

For multiple cores on a single machine, it is also possible to use OpenMP programming interface for mul-
tithreaded programs with shared memory. For instance, updates of particle positions or calculations of forces
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Figure 2: (a) A schematic free-energy profile as a function of order parameter Q. The probability density for a
given value of Q is p(Q) ∝ exp(−F (Q)/kBT ). Crossing from state A to state B is slowed down by the barrier.
(b) To accelerate transitions between A and B, an artificial biasing potential −kBT log(w(Q)) is added to the
system, which flattens the free-energy landscape, making the transitions much easier. One must subsequently
correct for the biasing potential when extracting results from the simulation.

can be split up into multiple threads, each handling particles assigned to it.
GPU molecular simulations are written as multithreaded codes with shared memory executed on graphical

processors, which are specifically designed to perform vector operations in parallel. The codes are usually
written in CUDA or OpenCL, which are C-like programming languages extended for GPU architectures. While
using GPUs is still not as well developed as CPUs, and so is typically harder to program and implement, the
speedups can be large, e.g. one or two orders of magnitude for MD simulations [19]. It is also possible to split
a simulation between multiple GPU cards in a network, with communication between them handled via MPI.

The parallelization methods outlined above are typically better suited for MD simulations, with the exception
of the trivial parallelization that is equally suitable for MC simulations as well.

5 Acceleration of equilibration and simulating rare events

If free-energy barriers are much larger than kBT (the typical energy scale in molecular simulations) then only a
very rare fluctuation will allow the simulated system to cross the barrier, leading to sampling problems. But if
you have some knowledge of the barrier, then progress can be made to accelerate the simulation. Several such
techniques are described below

But first, to characterize a barrier, choose an order parameter Q and plot the free energy F (Q), as illustrated
in Figure 2(a). The (meta)stable minima separated by a barrier can represent for example different conforma-
tional states of a molecule, or a system with unbound and bound ligand respectively. The order parameter
(reaction coordinate) Q characterizing the transition can be for example torsional angle or distance between a
receptor and a ligand. It is very important to pick a suitable order parameter (possibly multidimensional) to
describe the desired transition.

5.1 Umbrella sampling and free-energy calculation

Perhaps the most straightforward method to understand is called umbrella sampling. It introduces an additional
biasing potential −kBT log(w(Q(rN ))), which depends on the order parameter Q and is designed to flatten the
barrier to allow the simulation to more efficiently sample the relevant state space (see Figure 2(b)). During the
simulation, states are sampled according to

pw(Q) ∝ w (Q) exp

(
−F (Q)

kBT

)
(34)

The probability pw(Q) that a simulated biased system is in a state given by the value of order parameter Q
is estimated by simply counting the time the simulated system spends in configurations with a given value of
an order parameter and dividing it by the total simulation time. Of course this biasing procedure does not
reproduce the right statistical sampling of the ensemble. But the probability p(Q) of having order parameter
Q in the canonical ensemble can be estimated by correcting for the bias:

p(Q) ∝ pw(Q)

w(Q)
. (35)

10



For umbrella sampling to work efficiently, it is important to choose the appropriate order parameter that
characterizes the transition over the barrier. Furthermore, it is usually not obvious how to choose the biasing
functions w(Q), as we normally do not know beforehand what F (Q) looks like. A typical procedure is to start
with an (educated) initial guess for the biasing potential, run simulations that sample some of the values of order
parameter, and iteratively adapt the values of the biasing potential, each time setting weights w(Q) inversely
proportional to the estimated pw(Q) of sampled values of Q, until one finds that pw(Q) is more or less flat.

Umbrella sampling is often combined with weighted histogram analysis methods (WHAM) [8], which splits
values of Q into multiple independent overlapping intervals (”windows”). For each window, we run simulations
that sample values of Q within given interval. The intervals overlap between neighboring windows and the
estimates of probability p(Q) from different windows can be combined to obtain probabilities for all allowed
values of Q. The sampling simulations can be run concurrently to reduce the time required to obtain the desired
probabilities, from which the free-energy landscape of studied system can be derived as

F (Q) = −kBT log(p(Q)) + C. (36)

Free energy is defined up to a constant C, since shifting the profile by an arbitrary constant independent of Q
will not change the thermodynamics.

5.2 Parallel tempering

Since the time required to cross the barrier is ∝ exp(∆F/kBT ), it will be easier to cross the barrier at higher
temperature. Parallel tempering exploits this principle by coupling simulations at multiple temperatures. The
higher temperature runs have the advantage that they allow the simulation system to escape local free-energy
minima, while simulations at the lower temperature T of interest generate the correct ensemble averages.

In this scheme n simulations (MD or MC) are run in parallel at respective temperatures T1 < T2 < T3 <
. . . Tn. After a given number of steps, two neighboring temperatures Ta < Ta+1 are chosen and configurations
are swapped with acceptance probability that satisfies detailed balance [6]

p = min

(
1, exp

[(
1

kBTa
− 1

kBTa+1

)(
V (rNa )− V (rNa+1)

)])
, (37)

where V (rNa ) and V (rNa+1) denote the potential energy evaluated for the configuration of particles in a-th and
a + 1-th replicas respectively. In the variant of parallel tempering for MD, called replica exchange molecular
dynamics (REMD) [16], it is further necessary to rescale velocities of particles by a factor

√
Ta/Ta+1 for

configuration which was at Ta+1 prior to accepting the exchange, and by an inverse factor for velocities of
configuration originally at Ta.

Since the probability of accepting a configuration swap will rapidly drop to zero if Ta and Ta+1 are too
far apart, multiple intermediate temperatures may be more efficient than running just two replicas at T1 and
Tn. More replicas are more expensive of course, but closer temperatures lead to larger acceptance rates for
temperature swaps. So the number of replicas needs to be optimized to achieve the most efficient simulation.
If you are interested in what happens at different temperatures, this scheme has the bonus of speeding up the
lower temperature simulations at the same time. The advantage of parallel tempering is that there is no need
to specify an order parameter, as increasing the temperatures generally helps to overcome barriers. However
it does not allow the control in terms of pushing the system in a desired direction that can be achieved with
umbrella sampling.

5.3 Forward flux sampling

While umbrella sampling and parallel tempering help to efficiently sample the configuration space, they perturb
the dynamics of the system by adding an additional non-physical potential or by randomly switching config-
urations between different temperatures. To study the dynamics of barrier crossing, for instance to estimate
the rate of a process or to study in detail how the transition happens, we need to use rare event methods
[6, 2, 3, 18]. We briefly outline one example of rare event methods, forward flux sampling (FFS) [3, 2], which
can be employed for studying of transitions in systems in equilibrium as well as non-equilibrium.

FFS is best suited for a transition between two states (A and B) separated by a single barrier with no
metastable intermediates. The transition from A to B is partitioned by dividing interfaces λ0, . . . , λn, corre-
sponding to values of order parameter(s) Q, as schematically indicated in Figure 3(a). For Q < λ0, system is
in state A, and for Q > λn, it is in state B. FFS method starts by estimating the flux φ0A of trajectories leaving
from state A that cross interface λ0: We run a simulation and record coordinates of our system in phase space
whenever we reach interface λ0 while coming from state A. The simulation is stopped after a desired number
of crossings was generated. We divide the number of recorded states by the simulation time to obtain estimate
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Figure 3: (a) Interfaces for forward flux sampling are specified for a given value of order parameter Q. (b)
A schematic illustration of FFS method. Flux is generated by recording configurations (crosses) from the
trajectory that crosses λ0 coming from A. The stored configurations are used to launch simulations that are
stopped until they reach next interface (indicated with crosses), or go back to A. The configurations at the
interface λi are used to launch simulations to sample transition to λi+1. Process is repeated iteratively for each
interface.

of φ0A. The rate of transition from A to B is then obtained as

kAB = φ0A

n−1∏
i=0

P (λi+1|λi) (38)

where P (λi+1|λi) is the probability that trajectory coming from A and crossing λi will also cross λi+1 before
returning to state A. In practice, we can estimate P (λi+1|λi) by launching multiple simulations from randomly
selected saved configurations at interface λi and recording what fraction reaches λi+1 and what fraction goes
back to A, as schematically shown in Figure 3(b). We record the states that reached λi+1 and use them to
start simulations to estimate P (λi+2|λi+1). FFS method requires simulation with stochastic dynamics (such
as Langevin thermostat) to ensure that two simulations started from the same saved configuration will not
follow an identical path. FFS hence allows us to partition the transition from A to B into several intermediate
steps, where the probability estimation can be trivially parallelized by launching multiple simulations for a given
interface concurrently.

6 Simulation tools

6.1 Choice of a model

One popular choice for biomolecular simulations is to use fully atomistic representations. Several parameterized
force-fields are available for fully-atomistic simulations, with parameters based on quantum chemistry calcu-
lations or on empirical studies that fine-tune the potentials to reproduce experimental data (or both). Some
force-fields are optimized for certain molecules such as DNA or RNA duplexes, or folded proteins. Simulations
of biomolecules with fully atomistic resolution often requires explicit simulation of solvent molecules (water and
ions) as well, which makes the simulations particularly demanding for computational resources (although there
are methods to take water and ions into account implicitly). The maximum simulated time that can be achieved
by massively parallel MD simulations with fully atomistic resolution has only recently began to approach ms
timescale at which some of the biologically relevant processes happen [5]. There are ongoing efforts to refine
and improve these atomistic force-fields, in order to obtain more accurate descriptions of physical reality.

Another option is to use coarse-grained models, where multiple degrees of freedom are integrated out and
groups of atoms are replaced by a simplified coarse-grained representation (such as a single bead representing
a nucleotide in DNA or a protein residue). These simplifications mean it is possible to simulate processes and
systems that are out of reach for fully-atomistic models. Coarse-grained models usually do not explicitly simulate
the solvent, which is another reason they are often much faster than fully-atomistic models. However, the reduced
degrees of freedom come at a cost. Interactions in coarse-grained models need to be parameterized to reproduce
a desired property of the studied system. Such procedures are not straightforward. For example, fitting too
closely to one set of data (for example structure) will usually result in larger errors in other properties of the
model (say thermodynamics), a consequence of a general phenomenon of that has been called “representability
problems” [10]. Coarse-grained systems should always be used with care and physical insight is paramount to
avoid getting fooled by results that look good, but do not track physical reality.
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6.2 Choice of simulation software

Writing your own molecular simulation software allows you to tailor the code to the needs of your specific
system of interest, and often helps you understand more deeply what the strengths and weaknesses of your
simulation method are. But it can be a lot of work where you re-invent the wheel. Luckily there are now
many good software packages available that allow you to choose interaction potentials, the type of ensemble,
the integration method, the thermostat and more. These packages are typically highly optimized and support
various techniques for acceleration of the sampling.

Simulation software typically does not include visualization software, but allows simulation trajectories to
be stored in file formats which can be viewed in molecular visualization tools such as VMD (Visual Molecular Dy-
namics, available at www.ks.uiuc.edu/Research/vmd/) or Chimera (available at www.cgl.ucsf.edu/chimera/).
We can’t stress enough the importance of regularly visualizing configurations throughout a simulation and think-
ing carefully about the results to make sure they are physically plausible.

We provide a list of some available molecular simulation software packages below. Neither the list nor
description of their properties is by any means exhaustive. All of the packages listed below are under active
development, with new functionalities continuously being added, and it is hence advised to check the documen-
tation available on the website of the package for the full list of capabilities.

• Amber
Website: ambermd.org

Licence: Commercial, with separate pricing option for academic and industrial use
The Amber package contains simulation tools for MD simulations, as well as its own parameterized
force-fields. It is primarily aimed at simulating biomolecular systems such as proteins, lipids, nucleic
acids, as well as solvents and ions with fully-atomistic resolution. The simulation code is highly scalable
and supports parallelization on multiple CPUs as well as on GPUs. It implements several methods for
acceleration equilibration and for free-energy estimation. Various other tools for preparation of the initial
configuration of molecules and for the trajectory analysis are also provided.

• CHARMM
Website: www.charmm.org

License: Available for academic use for a nominal fee
CHARMM, like Amber, is aimed at fully-atomistic MD simulations. It comes with its own CHARMM
force-field parametrization. It supports parallelization and implements standard algorithms for simulations
of various thermodynamic ensembles, along with advanced sampling techniques.

• Gromacs
Website: www.gromacs.org

Licence: GNU Public License
Gromacs is a general purpose MD simulation package, which is a popular choice for MD simulations with
fully-atomistic resolution, often used for biomolecular systems. It can be used for simulations with user-
specified interaction, including imported force-fields from Amber or CHARMM. It supports parallelization
on multiple CPUs, as well as carrying out simulations that split up the calculations between CPUs
and GPUs. It implements a vast number of methods for acceleration of equilibration (including REMD
and Umbrella sampling), relaxation and preparation of the initial configuration, and tools for trajectory
analysis.

• NAMD
Website: www.ks.uiuc.edu/Research/namd

Licence: Free for non-commercial use
NAMD is a software package for biomolecular simulation, especially aimed at large-scale systems with
fully atomistic resolution. It is optimized for a high scalability of parallelized MD simulations on CPUs
and GPUs.

• HOOMD-blue
Website: codeblue.umich.edu/hoomd-blue

Licence: Free
HOOMD-blue is a general purpose MD simulation package. It supports common integration methods
for several thermodynamics ensembles and also supports MD with rigid bodies. The simulation is setup
and analyzed via a script in Python programming language, and also produces trajectory information in
common file formats. It supports parallelization on multiple CPUs and on GPU. It allows to choose from
a large variety of interaction potentials commonly used in coarse-grained models or to specify a custom
one in a table.
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• OxDNA
Website: dna.physics.ox.ac.uk

Licence: GNU Public License
OxDNA was originally developed as a simulation package for a coarse-grained model for DNA and it has
since been reworked as a general simulation package for both MC and MD simulations. It implements
Lennard-Jones particles, patchy particles, and coarse-grained models of DNA and RNA. New systems can
be added by implementing a user-defined interaction in a C++ interface. It supports parallelization on
GPUs.

• LAMMPS
Website: lammps.sandia.gov

Licence: GNU Public License
LAMMPS is a general-purpose simulation package, applicable both to a wide range of coarse-grained
systems as well as simulations with fully atomistic resolution. It implements MD integrators for several
thermodynamic ensembles and supports parallelization on CPUs and GPU.

• ESPResSo
Website: espressomd.org

Licence: GNU Public License
ESPResSo is a software tool aimed at MD simulations of coarse-grained models, and supports potentials
and simulations constraints often used for coarse-grained systems. The simulations are setup using Tcl
scripting language, and software allows for parallelization on CPUs and GPU.

7 Summary

• Molecular dynamics and Monte Carlo algorithms allow us to simulate a system on a computer in order
to sample its properties at equilibrium and also study its dynamics. Computer simulations can be used
to study properties of a molecular system at the level of detail not accessible to experiments, but also be
used to test a theory.

• The most popular algorithm for integrating equations of motion in MD is Verlet algorithm and its vari-
ants. For studying thermodynamic ensembles at constant temperature and/or pressure, one needs to use
thermostats/barrostats coupled to the MD simulation.

• Using reduced units helps monitor errors and clarify physical principles in simulations.

• Runing simulations in a box with periodic boundary conditions helps ensure better sampling of bulk
properties.

• Make sure to consider both statistical and systematic errors that arise in the simulations. Simulation
software tools allow to regularly log information such as kinetic and potential energy, so remember to
check their values are always reasonable. Periodically saving system configuration and visualizing the
snapshots/movies is also advised.

• Simulated systems often involve large barriers and local minima which can greatly increase the simulation
time necessary to obtain enough statistics to accurately estimate quantities of interest, often making it
impossible to study these processes by a simple MD/MC simulation. Advanced sampling and rare event
methods (such as umbrella sampling, parallel tempering or forward flux sampling) need to be employed
to overcome such barriers.

• For biomolecular simulations, one usually chooses between simulations with fully-atomistic resolution or
coarse-grained models, which are more efficient, but describe the system at a lower level of detail. It is
important to carefully consider which properties of the system we are interested in and if they can be
accurately captured by the model used.

8 Exercise

8.1 Lennard-Jones fluid

Write a simulation code (or use one of the available packages) to perform MD and MC simulation of particles
interacting with a pairwise Lennard-Jones potential:

vij(r) = 4ε

((σ
r

)12
−
(σ
r

)6)
. (39)
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Use a system of reduced units (measure energy in ε, distance in σ, and set mass m = 1), periodic boundary
conditions and truncated and shifted version of potential in Eq. (39) with tail corrections, with rc set to half of
the simulated box size.

1. Simulate an NVE ensemble in MD and check how step size affects conservation of energy. Then simulate
NVT ensemble with MC and check how selection of maximum move size affects acceptance probability.

2. To obtain the equation of state of Lennard-Jones fluid, carry out simulations of an NVT ensemble (using
MD or MC) with 108 particles at temperature T = 2ε/kB at densities ρ ranging from 0.1 to 1.0 (in reduced
units). Use virial equation [6] to calculate pressure for each simulated density, and compare the resulting
equation of state with the values in Ref. [7].

8.2 Melting of an RNA duplex

Use a coarse-grained model of RNA, oxRNA [17] (implemented as a part of oxDNA package), to simulate melting
of an RNA 8-mer. Setup a duplex in a simulation box with box side length 16.8 nm (convert appropriately to
model’s reduced units). Use the averaged-strength version of the model (which treats A-U and G-C base
pairing as equally strong) and setup an NVT simulation at T = 62 ◦C, which corresponds to the bulk melting
temperature for the strand concentration used.

1. Run MC, MD, and VMMC simulations, starting from fully formed duplex. Monitor the number of base-
pairs between the strands over the course of simulation. How often do you observe transition between
single stranded and duplex state with various methods?

2. Use VMMC combined with umbrella sampling to accelerate the transitions between the single-stranded and
duplex states. Compare the number of transitions observed in the biased simulation with the previously
run unbiased ones. From simulation data, estimate the probability of the system having nb base-pairs,
where nb ranges from 0 to 8. Plot the free-energy profile as a function of nb. How would the free-energy
difference between nb = 0 and nb = 1 change if you ran the simulation in 8-times larger simulation box? Is
it necessary to run a new simulation to find out, or can it be calculated from data generated in a smaller
box?

3. Calculate the melting temperature of the duplex. The melting temperature Tm is defined as a temperature
at which half of the duplexes in the bulk dissociate into single strands. You can run multiple simulations
at temperatures in the neighborhood of the expected melting temperature (around 62 ◦C), and calculate
the bulk duplex yield for each one of them:

f = 1 +
1

2Φ
−

√(
1 +

1

2Φ

)2

− 1 (40)

where Φ is the number (unbiased) number of duplex states divided by the number of single-stranded states
as observed in the simulation. Note that f differs from the simulation box yield Φ/(1 + Φ) due to the
correction for finite size effects [12]. Plot f as a function of temperature, the melting temperature Tm
corresponds to f = 0.5. It is also possible to run simulation just at a single temperature T and extrapolate
Φ to temperatures close to T using histogram reweighting [20].
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